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ABSTRACT

We present a method of detecting and localising outliers in financial time series and other stochastic processes.
The method checks the internal consistency of the scaling behaviour of the process within the paradigm of
the multifractal spectrum. Deviation from the expected spectrum is interpreted as the potential presence of
outliers. The detection part of the method is then supplemented by the localisation analysis part, using the local
scaling properties of the time series. Localised outliers can then be removed one by one, with the possibility
of dynamic verification of spectral properties. Both the multifractal spectrum formalism and the local scaling
properties of the time series are implemented on the wavelet transform modulus maxima tree.
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1. INTRODUCTION

All real life stochastic signals are subject to contamination by noise. This can be relatively low level
random noise or some systematic bias. But it can also be a sudden shoot off from the current value of
the sensoric information - the outlier. The main difference between the noise or bias in the traditional
sense and an outlier, which of course is also ‘noise’, is the inherently isolated and local character of the
outlier. In addition, outliers will usually have high amplitudes and generally there will be relatively
few of them. Therefore, non-stationarity and a highly erratic character is the main characteristic
which constrasts with stationary (white) noise or linear or polynomial bias.

Financial time series, which are gathered by banks on a daily basis in large volumes (to the order of
a million different indicators per day), are sometimes contaminated with outliers. All financial records
are hand typed and are prone to exactly the outlier type of contamination/noise. A highly desirable
possiblity would be to be able to detect such errors at an early stage in the newly collected data. In a
more general formulation, it is of fundamental importance to determine whether a particular extreme
observation belongs to the bulk of the data or should be treated as an outlier. The issue of outliers in
financial time series has recently been extensively discussed by Johansen et al [1, 2] and by L’vov et
al [3].

In figure 1, we present examples of the time series obtained from a Dutch bank with suspected
outliers in them. The reader may say, ‘It is very easy to see outliers in these plots; one can determine
them with the naked eye.” We agree. The human eye (or visual system) is an outstanding pattern
recognition system, very good in detecting non-stationarities. It is capable of fitting models and
performing approximations in real time using various acquired knowledge. It is, however, also an
adaptive system: different runs of the same experiment will likely result in different answers. Varied
magnification, resolution or normalisation will also most likely affect the results. In this paper, we
would like to provide some objective criteria which should also be suitable to be exercised automatically
by the computer.

For this purpose we will need a methodology which is capable of determining the statistical nature of
the non-stationary process in both a global and a local sense. The global sense will be primarily used
to detect the presence of the outliers in the process analysed. The local properties will next be used to
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Figure 1: Example financial time series with suspected outlier presence.

identify the offenders. Multifractal formalism has recently been suggested for analysis and modelling
of financial time series [4, 5, 6, 7]. It seems therefore natural to build our methodology around
the generic wavelet based multifractal analysis first introduced by Arneodo, Bacry and Muzy [8, 9].
The formalism has been extensively used to test many natural phenomena and has contributed to
substantial progress in several domains in which it has been applied [10, 11, 12, 13]. Nevertheless its
use has been hampered by its sensitivity to outliers. Ironically, this is, of course, a highly required
property in our application.

We will first introduce the wavelet transform, paying special attention to detection and analysis
of singular events. Then we will briefly describe the global partition function based multifractal
formalism, showing how it can be applied to test the statistical integrity of the analysed process. Next
we will introduce the local version of multifractal singularity strength analysis, again showing how the
statistical integrity of the analysed process can be tested, now in a local fashion, allowing not only
the detection but also the localisation of outliers.

Section 5 closes the paper with conclusions and suggestions for future developments.

2. CONTINUOUS WAVELET TRANSFORM AND ITS MAXIMA USED TO REVEAL THE STRUCTURE OF
SINGULARITIES IN THE TIME SERIES

Conceptually, the wavelet transformation [14, 15] is a convolution product of the time series with the
scaled and translated kernel - the wavelet ¥ (), usually a n— th derivative of a smoothing kernel 6(z).
Usually, in the absence of other criteria, the preferred choice is the kernel, which is well localised both
in frequency and position. In this paper, we chose the Gaussian 6(x) = exp(—x?/2) as the smoothing
kernel, which has optimal localisation in both domains.

The scaling and translation actions are performed by two parameters; the scale parameter s ‘adapts’
the width of the wavelet kernel to the microscopic resolution required, thus changing its frequency
contents, and the location of the analysing wavelet is determined by the parameter b:

z—b
s

Wieh =1 [ dr i@ e,

where s,b € R and s > 0 for the continuous version (CWT).

The 3D plot in figure 2 shows how the wavelet transform reveals more and more detail while
going towards smaller scales, i.e. towards smaller log(s) values. Therefore, the wavelet transform is
sometimes referred to as the ‘mathematical microscope’, due to its ability to focus on weak transients
and singularities in the time series. The wavelet used determines the optics of the microscope; its
magnification varies with the scale factor s.

It can be shown [16] that for isolated cusp singularities, the location of the singularity can be de-
tected, and the related exponent can be recovered from the scaling of the Wavelet Transform, along
the so-called mazima line, converging towards the singularity. This is a line where the wavelet trans-
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Figure 2: Left: Continuous Wavelet Transform representation of the random walk (Brownian process)
time series. The wavelet used is the Mexican hat - the second derivative of the Gaussian kernel. The
coordinate axes are: position z, scale in logarithm log(s), and the value of the transform W (s,z).
Right: the related WTMM representation.

form reaches local maximum (with respect to the position coordinate). Connecting such local maxima
within the continuous wavelet transform ‘landscape’ gives rise to the entire tree of maxima lines. Re-
stricting oneself to the collection of such maxima lines provides a particularly useful representation [17]
(WTMM) of the entire CWT. It incorporates the main characteristics of the WT: the ability to reveal
the hierarchy of (singular) features, including the scaling behaviour [9]. Restricting oneself to the
collection of such maxima lines provides a particularly useful representation of the entire CWT. In
particular, we have the following power law proportionality for the wavelet transform of the isolated
cusp singularity in f(zg): !

W™ f(s,30) ~ |s[") .

This is on condition that the wavelet has at least n vanishing moments, i.e. it is orthogonal to
polynomials up to degree n: fj;o 2™ Y(x)de =0 VYm, 0<m<n.

Moreover, the wavelet transform and its WTMM representation can also be shown to be invariant
with respect to the rescaling/renormalisation operation [25, 9, 21, 20]. This property makes it an ideal
tool for revealing the renormalisation structure of the (hypothetical) multiplicative process underlying
the analysed time series.

3. MULTIFRACTAL FORMALISM ON THE WTMM TREE

The WTMM tree lends itself very well to defining the partition function based multifractal formalism
(MF) [9]. The MF takes the moments g of the measure distributed on the WTMM tree to obtain the
dependence of the scaling function 7(g) on the moments g:

Z(s,q) ~ s,

The Z(s,q) is the partition function of the ¢-th moment of the measure distributed over the wavelet
transform maxima at the scale s considered:

1 One should bear in mind that the above relation is an approximate case for which exact theorems exist [18]. In
particular, we will restrict the scope of this paper to Holder singularities for which the local and point-wise Holder
exponents are equal [19]. Thus we will not take into consideration the ‘oscillating singularities’ (e.g z®*sin(1/z?))
requiring two exponents [18, 20]. Nevertheless, it is sufficient for our purpose to state that the continuous wavelet
transform can be used for characterising the Holder singularities in the time series even if masked by the polynomial
bias.



Z(s,q) = Y (W fwi(s))? (3.1)

Q(s)

where Q(s) = {w;(s)} is the set of all maxima w;(s) at the scale s, satisfying the constraint on their
local logarithmic derivative in scale [22]. (The local slope bound used throughout this paper is |luz| <2)

Since the moment ¢ has the ability to select a desired range of values: small for ¢ < 0, or large for
for ¢ > 0, the scaling function 7(g) globally captures the distribution of the exponents h(z) - weak
exponents are addressed with large negative ¢, while strong exponents are suppressed and effectively
filtered out. For the large positive ¢, the opposite takes place (and strong exponents are addressed
while weak exponents are effectively filtered out).

This dependence may be linear, indicating that there is only one class of singular structures and
related exponents, or it may have a slope non-linearly changing with ¢. In the latter case, the local
tangent slope to 7(g.) will give the corresponding exponent, i.e. h(g.), with its related dimension
marked on the ordinate axis C' = D(h(g«)), where 7(gx) = h(g«)g« + C. The set of values C, i.e.
dimensions D(h(g.)) for each value of h selected with g. is the so-called spectrum of the singularities
D(h) of the fractal signal. Formally, the transformation from 7(q) to D(h) is referred to as the
Legendre transformation:

dr(q)
=h
a (@),
D((h(a)) = q h(q) — 7(a) - (3:2)
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Figure 3: Left: ‘First_Dirty’. Right: ‘First_Clean’. The only difference between the two time series is
a number of erroneous spikes which in ‘First_Clean’ were localised using external information and were
removed by hand. The plot of ‘First_Clean’ still shows spikes which belong to the process investigated.
The task of the methodology to be described is to detect the presence of erroneous spikes in time series
and provide the means of localising them. The renormalised plot of ‘First_Clean’ reveals its complex
form. Spiky events are still present in the time series, but these belong to the process.

From this transformation, we can directly obtain expressions for the average h(q) and D((h(g)) in
terms of the partition function over maxima values. From 3.2 and 3.1 we have:

dr(q) .. d log(Z(s,9) _ .
h(a) dg 50 dg  log(s) 520 log(s)

Y P(s,q,wils)) log(W fwi(s)) (3-3)

Q(s)
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where

(W fwi(s))*

P(s,q,wis)) = Ya(s) (W fwi(s))?

(3.4)

is the weighting measure for the statistical ensemble (s) [10]. Similarly we obtain the expression for
D(h(q)):

1
)=1lim ——

D(h(q) s—0 log(s)

D pls,q,wi(s)) log(p(s, 4, wi(s))) -

Q(s)

(3.5)

Usually this pair is used to obtain D((h(g)) spectrum in a parametric form (g is a parameter here).
We will, however, also show D(q) and h(q) separately, since the explicit dependence on g is crucial for
our purpose.

In figure 4, we show D(h(gq)) evaluated for the ‘Dirty’ time series from figure 1 and for its cleaned
version where the outlier spikes were removed using external information, see figure 3.

The difference in the spectral information is striking and well reflects the high sensitivity of the
partition function method to outliers. The spectrum for the clean version is narrow and focused
around the mean value of singularity strength h,;cq, = 0.4. For the dirty version, we have a very
broad spectrum which gradually falls off to zero dimension values for decreasing h < h;eqrn- This fall
off regime corresponds with positive ¢ values which have the ability to select exponents of a relatively
lower value than the hpeq, value. Since (in this example) we are operating in the h = 0.4 range, thus
capturing spikes for which h = —1 (in an isolated situation) is relatively easy.

Let us immediately remark that processes exist which have a wide range of h among their charac-
teristic. Such processes are generically called multifractal, as a fractal dimension D(h) is associated
with each h. Hence, if there is a multitude of meaningful values D(h.) (associated with some h,) con-
stituting the spectrum of the process, the process can be of multifractal type. The difference between
such processes and the processes with outliers is in the relative values of D(q) and the spacing between
the successive ¢’s. For the process to have a meaningful multifractal spectrum, we will require dense
coverage of h(q) values. Also the D(q) values should be relatively large for meaningful spectra. Dense
support on a line corresponds with dimension 1. Single points, that is separated point-wise events,
on the other hand have support 0. Therefore, if D(q) is near 0, this indicates very weakly supported
events and therefore a high probability of an outlier.
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Figure 4: Left: D(h(q)) evaluated for the ‘First_Dirty’ time series from figure 1. Right: the same
for the ‘Clean’ version of the same time series. (The outlier spikes were removed using external
information.) A clear difference in D spectrum is visible.
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Figure 5: Left: h(q) evaluated from 3.3 for both ‘Clean’ and ‘Dirty’ time series from fig 1. h shows
a strong crossover, and for ¢ > 1 quickly falls off the average 0.4 value for this process. Right: D(q)
evaluated from 3.5 for the same time series. Again a clear difference in behaviour is visible. D quickly
approaches 0 for g larger than 1.

In figure 5 we check D(q) and h(q) separately in order to analyse the dependence on ¢. The test data
in figure 5 is contaminated with Dirac delta type outliers. For comparison we also analyse outlier-free
time series. h(q) evaluated from Eq. 3.3, shows a strong crossover, and for ¢ > 1 it quickly falls off
the average hmean value. Also in the case of D(q) evaluated from Eq. 3.5 for the contaminated time
series, a clear difference in behaviour is visible. D(gq) quickly approaches 0 for ¢ larger than 1.

The conclusion that we can derive from such test results is that comparing the value of both the
h(q) and D(q) for positive ¢’s may be useful for detecting the presence of spikes in the time series. In
particular the second moment ¢ = 2 seems to be suitable for use as a criterium in comparison with the
reference ¢ = 0 moment. The rule of thumb which we suggest is that if the value of h(q = 2) differs
from h(g = 0) by some 0.5 and if D(¢g = 2) is about 0.5 or less, the probability of spike presence is
relatively high.

For actual localisation of spikes, we need the local value of h(x) instead of the global average as
defined in Eq. 3.3. Such a local h(x) will make possible separating outliers from the residue, using
some threshold value for h. This will be discussed further in the next section.

4. ESTIMATION OF THE LOCAL, EFFECTIVE HOLDER EXPONENT USING THE MULTIPLICATIVE CAS-
CADE MODEL

Note that even though the partition function method (discussed thus far) uses the maxima tree
containing full local information about the singularities, this is lost at the very moment the partition
function is computed. Therefore, there is no explicit local information present in the scaling estimates;
T, h or D, and all these are global statistical estimates. This is also where the strength of the partition
function method lies - global averages are much more stable than local information and in some cases
global information is all that it is possible to obtain.

We have shown in the previous section that the wavelet transform, and in particular its maxima lines,
can be used in evaluating the Hélder exponent in isolated singularities. In most real life situations,
however, the singularities in the time series are not isolated but densely packed. The logarithmic rate
of increase or decay of the corresponding wavelet transform maximum line is usually not stable but
fluctuates, following the action of the (hypothetical, multiplicative) process involved.

Indeed, it is generally not possible to obtain local estimates of the scaling behaviour other than
in the case of isolated singular structures from the WT. This is why we introduced [23] an approach
circumventing this problem while retaining local information - a local effective Holder exponent, in
which we model the singularities as created in some kind of a collective process of a very generic class.
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To capture the fluctuations and estimate the related exponents (to which we will refer as an effective
Holder exponent of the singularity), we will model the singularities as created in some kind of a
collective process of a very generic class - the multiplicative cascade model. Each point in this cascade
is uniquely characterised by the sequence of weights (si...s5), taking values from the (binary) set
{1,2}, and acting successively along a unique process branch leading to this point. Suppose that we
denote the density of the cascade at the generation level F; (i running from 0 to mazx) by k(F;), we
then have

K(Fmaz) = Psy - Ds, £(Fp) = be'"” k(Fo)

and the local exponent is related to the rate of increase of the product Py over the gained scale
difference. In any experimental situation, the weights p; are not known and h has to be estimated.
This can be simply done using the fact that for the multiplicative cascade process, the effective product
of the weighting factors is reflected in the difference of logarithmic values of the densities at Fp and
F.qz along the process branch:

ro _ 108(K(Finaz)) — log(k(Fo))

Fmas " log((1/2)me®) —log((1/2)°)
The densities along the process branch can be estimated with the wavelet transform, using its remark-
able ability to reveal the entire process tree of a multiplicative process [25]. It can be shown that the
densities x(F;) corresponds with the value of the wavelet transform along the maxima lines belonging
to the given process branch. The estimate of the effective Holder exponent becomes:

Bshi = log(waPb(slo)) — log(wapb(shi))
Ste log(si0) — log(sns)
where W fwpp(s) is the value of the wavelet transform at the scale s, along the maximum line wp

corresponding to the given process branch. Scale s;, corresponds with generation F,,;, while sp;
corresponds with generation Fp, (simply the largest available scale in our case).

’

4.1 Estimation of the Mean Hélder Exzponent
For a multiplicative cascade process, a mean value of the cascade at the scale s can be defined as:

| Yo los(W fwi(s)) |
B Z(s,0) ’

M(s) (4.1)

where the Z(s,0) is the partition function Eq. 3.1 for ¢ = 0 and corresponds with the number of
maxima at the scale s considered.

This mean is compatible with the canonical formalism based spectrum,? see Eq. 3.3, and gives the
direct possibility of estimating the mean value of the local Hélder exponent as a linear fit to M:

log(M(s)) = hlogs +C . (4.2)

Therefore, we estimate our mean Holder exponent h from 4.2. The estimate of the local Holder
exponent, from now on to be denoted as h(zg,s) or just h, now becomes:

fose o 108(Wf(s10)) = (hlog(ssz) + C)
Slo T log(si,) — log(ssz) )

2In Ref. [23], we used a different, ‘micro-canonical’ mean, which in general differs slightly from the canonical one.
For reasons of the compatibility of the spectra, we take the canonical mean here.
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Figure 6: Left: the projection of the maxima lines of the WT along time. The mean value of the
Holder exponent can be estimated from the log-log slope of the line shown. Also, the beginning of the
cascade at the maximum scale sp; is indicated. Right: the maxima at the smallest scale considered
are shown in the projection along time. The effective Hélder exponent can be evaluated for each point
of the maximum line at s;, scale. Two extremal exponent values are indicated, for minimum and
maximum slope.

4.2 Employing the Effective Holder Ezponent in Local and Global Spectra Estimation Ezamples
Such an estimated local h(z, s) is a function of the same x parameter (time, position) as the analysed
function f(z), and can be analysed in a local fashion or histogrammed in order to study its distribution
properties.
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Figure 7: Left: the local Holder exponent for the time series from figure 3 left. Right: the cor-
responding log-histograms of the local Holder exponent. Thresholding on h separates outliers from
residue.

In figure 7, we depict it in a temporal fashion for the record contaminated with Dirac type events, see
figure 4. The local h(z,a = log(10)) plot is rather varied, but still clustered around the Apean = 0.4.
There are several ‘drop down’ events present, indicating the presence of strong singular events. These
can be selected using an appropriate threshold on h.

Generic criteria for threshold choice can be obtained from the statistical distribution of the h
exponent. For this purpose, the log-histogram® of h can be analysed, see figure 7 right. For noisy

3Tt is obtained by taking the logarithm of the measure in each histogram bin. This conserves the monotonicity of the
original histogram, but allows us to compare the log-histograms with the spectrum of singularities D(h). By following
the evolution of the log-histograms along scale, we will be able to extract the spectrum of the singularities D(h).
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time series, the corresponding histograms show considerable widening, often accompanied by visible
fragmentation (discontinuity).

Determining the ‘noiseless’ width of the histogram and the point above/below which ‘noise’ starts
is a crucial task in this procedure. The histogram can provide good insight, but it is somehow hard
to automatize the choice of the threshold level and make it arbitrary. We have, therefore, resorted to
a simple heuristic.

A good threshold value which worked well in our tests (for an account of the experimental work we
refer the reader to Ref [24] ) was determined using the scaling exponent of (the square root of) the
second moment of the measure Z(s, 2):

and the thresholding h exponent is then determined from the linear fit:

log(M'(s)) = hlog(s) + C" . (4.4)

In cases where there are outliers in the time series, this quantity, the ‘micro-canonical’ geometric
mean, h does not coincide with the Apeqr, mode value of the D(h) distribution. In such cases it can
be used for the threshold between the outliers and the residue, as in figure 7. In fact, the h value
can also be used as an additional criterium (besides that suggested in the previous section) for testing
for the presence of outliers. In cases where the h;cq, differs significantly from ﬁ, the probability of
outliers is high.

Finally, the histogram of the h exponent is shown in figure 7, with the tail to the lower h values
clearly visible. The same threshold h as in the local plot separates the residual bulk and the tail
outlier events.

5. CONCLUSIONS

We have presented a method of detecting and localising outliers in stochastic processes. The method
checks the internal consistency of the scaling spectrum of the process within the paradigm of the
multifractal spectrum. Deviation from the expected spectrum is interpreted as the potential presence
of outliers. We suggested a rule of thumb to detect the presence of outliers based on the global,
partition function based multifractal formalism. The detection part is then supplemented by the
localisation analysis part, using the local scaling properties of the time series. Each data point has
an (effective) Holder exponent associated with it, and based on some threshold level, the outliers can
be separated from the residue of the exponent distribution. In particular, localised outliers can then
be removed one by one, with the possibility of the dynamic verification of spectral properties (in a
dynamic programming approach).

A possible extension to the methodology is in estimating the ‘size’ of outliers from the scale at which
the associated maxima lines appear. Properties of the size distribution of all singular events could
then be used with the related Holder exponent distribution for outlier discrimination and localisation.

Another direction is the real time, fast computation of the time series local effective Holder exponent
and scaling properties with the use of the Haar wavelet [26]. Testing in real time for the likelihood of
the current sample (that last acquired) being an outlier is crucial in some financial applications.
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